Статус документа
Статус документа


РБ-053-10

     
Положение о повышении точности прогностических оценок радиационных характеристик радиоактивного загрязнения окружающей среды и дозовых нагрузок на персонал и население


Дата введения 2010-06-08

УТВЕРЖДЕНО приказом Федеральной службы по экологическому, технологическому и атомному надзору от 8 июня 2010 г. N 465


Настоящее Положение о повышении точности прогностических оценок радиационных характеристик радиоактивного загрязнения окружающей среды и дозовых нагрузок на персонал и население (далее - Положение) носит рекомендательный характер и не является нормативным правовым актом.

Настоящее Положение содержит рекомендации по использованию расчетных методов прогнозирования радиационных характеристик радиоактивного загрязнения окружающей среды и дозовых нагрузок на персонал и население.

Настоящее Положение предназначено для лиц и организаций, занимающихся вопросами проектирования и конструирования АСКРО на АС и других ОИАЭ.

Настоящее Положение разработано на основе требований федеральных законов от 21 ноября 1995 г. N 170-ФЗ "Об использовании атомной энергии", от 09 января 1996 г. N 3-ФЗ "О радиационной безопасности населения", от 10 января 2002 г. N 7-ФЗ "Об охране окружающей среды"; федеральных норм и правил: "Нормы радиационной безопасности" (НРБ-99/2009), утвержденных постановлением Главного государственного санитарного врача Российской Федерации от 07 июля 2009 г. N 47, "Основные санитарные правила обеспечения радиационной безопасности" (ОСПОРБ-99), утвержденных постановлением Главного государственного санитарного врача Российской Федерации от 27 декабря 1999 г.; с учетом рекомендаций, содержащихся в документе МАГАТЭ: "Учет дисперсионных параметров атмосферы при выборе площадок для атомных электростанций"* (Руководство по безопасности N 50-SG-S3. Международное Агентство по Атомной Энергии, Вена, 1982 г.).

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.


Выпускается впервые.

________________

Положение разработано авторским коллективом Научно-технического центра по ядерной и радиационной безопасности Федеральной службы по экологическому, технологическому и атомному надзору, а также сотрудниками ОАО "ВНИИАЭС" в составе Елохина А.П., Жилиной М.В. (НТЦ ЯРБ), Pay Д.Ф., Иванова Е.А. (ВНИИАЭС).


I. Общие положения

1. Настоящее Положение о повышении точности прогностических оценок радиационных характеристик радиоактивного загрязнения окружающей среды и дозовых нагрузок на персонал и население (далее - Положение) входит в число руководств по безопасности, носит рекомендательный характер и не является нормативным правовым актом.

2. Настоящее Положение содержит рекомендации Федеральной службы по экологическому, технологическому и атомному надзору по использованию расчетных методов прогнозирования радиационных характеристик радиоактивного загрязнения окружающей среды и дозовых нагрузок на персонал и население, включая рекомендации:

- по обоснованию того, что использование показаний детекторов фотонного излучения, наряду с расчетными данными, позволяет значительно повысить точность прогнозирования расчетных оценок радиоактивного загрязнения окружающей среды, а погрешность расчетов свести к погрешности детектора;

- по формулировке основных принципов и выбору критериев для оптимального размещения постов радиационного контроля на промплощадке и в санитарно-защитной зоне (далее - СЗЗ) атомной электростанции (далее - АС), позволяющих минимизировать последствия радиационных аварий;

- по выбору алгоритма, способствующего повышению точности прогностических оценок радиационных характеристик радиоактивного загрязнения окружающей среды, для определения координат детектора фотонного излучения, расположенного на промплощадке и в СЗЗ АС.

3. Использование рекомендаций настоящего Положения направлено на решение следующих основных задач:

- оптимизацию финансовых затрат на разработку автоматизированных систем контроля радиационной обстановки (далее - АСКРО) АС и объектов использования атомной энергии (далее - ОИАЭ);

- осуществление прогнозирования результатов радиоактивного загрязнения окружающей среды при отсутствии информации о радионуклидном составе радиоактивной примеси, выброшенной в атмосферу в условиях радиационных аварий на АС или любом другом ОИАЭ, на котором внедрена АСКРО с учетом рекомендаций настоящего Положения;

- повышение точности прогнозирования результатов радиоактивного загрязнения окружающей среды и дозовых нагрузок на персонал и население при радиационных авариях на АС или других ОИАЭ.

II. Рекомендации к составу и условиям работы АСКРО

4. Основу АСКРО составляют: система постов контроля мощности дозы фотонного излучения, размещаемых на местности; совокупность датчиков, измеряющих метеопараметры, по показаниям которых определяется состояние устойчивости атмосферы; технологические датчики АС, предназначенные для определения параметров выброса радиоактивной примеси в атмосферу; программное обеспечение нижнего и верхнего уровней, из которых первое обеспечивает обработку данных (показаний датчиков) с целью преобразования их в специальный формат - для использования в качестве исходных данных при проведении прогностических расчетов. Основу программного обеспечения верхнего уровня составляют расчетные модели переноса радиоактивной примеси в атмосфере и водной среде, а также математические методы оценки дозовых нагрузок на персонал и население. С его помощью непосредственно осуществляются прогностические расчеты радиоактивного загрязнения окружающей среды. Структурная схема состава АСКРО приведена на рис.1 Приложения N 1.

5. Функционирование АСКРО рекомендуется осуществлять в режиме реального времени, что достигается путем автоматизации сбора данных по радиационным и метеорологическим параметрам, на основе которых осуществляются прогностические расчеты с использованием математических моделей распространения радиоактивной примеси в воздушной и водной средах при выбросах АС.

6. При проектировании АСКРО необходимо принимать во внимание экономические, экологические, физико-технические критерии, а также демографические особенности региона, где размещена АС. Указанные критерии, отвечающие условиям размещения постов радиационного контроля на промплощадке и в СЗЗ ОИАЭ, приведены в Приложении N 2.

7. Погрешность прогностических оценок радиоактивного загрязнения окружающей среды и дозовых нагрузок на персонал и население, получаемых с помощью расчетных моделей, может быть минимизирована за счет уточнения метеопараметров атмосферы, использования показаний детекторов фотонного излучения АСКРО и уточнения величины мощности выброса газоаэрозольной радиоактивной примеси (), поступающей в атмосферу, в условиях радиационных аварий и при штатной работе.

III. Определение метеорологических параметров для оценки условий формирования радиационной обстановки на местности

8. Особую роль в оценке состояния устойчивости пограничного слоя атмосферы играют определяющие его метеорологические параметры: скорость ветра, температура, влажность и т.д. Изменение одного из этих параметров непременно ведет и к изменению состояния устойчивости пограничного слоя в целом, а это, в свою очередь, - к изменению концентрации радиоактивной примеси и изменению радиационной обстановки на местности.

9. Определение метеорологических параметров, применительно к региону, в котором расположена АС, целесообразно осуществлять на специальных метеоплощадках лабораторий внешней дозиметрии.

10. Измерение направления, скорости ветра, температуры и влажности рекомендуется проводить на нескольких уровнях на метеомачте, расположенной на метеоплощадке лаборатории внешней дозиметрии, применяя методику градиентных наблюдений. Измеренные параметры в дальнейшем могут быть использованы как реперные точки для расчета полных профилей этих величин в пограничном слое атмосферы в более совершенных метеорологических моделях или как постоянные - непосредственно в уравнениях, на основании которых рассчитывают распределение радиоактивной примеси в атмосфере при ее переносе. Методика обработки градиентных наблюдений приведена в Приложении N 3, а в Приложении N 4 приведены методы вычислений метеопараметров.

IV. Рекомендации по использованию моделей переноса радиоактивной примеси в атмосфере

11. Выбор модели переноса радиоактивной примеси в атмосфере рекомендуется осуществлять на основании:

1) результатов прогностического расчета радиоактивного загрязнения окружающей среды и дозовых нагрузок на персонал и население с "удовлетворительной (наименьшей) погрешностью" на расстояниях не менее 30 км от источника выбросов при любой эффективной высоте источника радиоактивного загрязнения, не превышающей высоту пограничного слоя атмосферы с учетом:

- особенности подстилающей поверхности, определяющей величину скорости сухого осаждения (значения скорости сухого осаждения для различных нуклидов и типов поверхности приведены в Приложении N 5);

- параметра шероховатости (значения параметра шероховатости для различных типов подстилающих поверхностей приведены в Приложении N 6);

- вымывания радиоактивной примеси естественными осадками (дождем, снегом) и туманом (значения постоянной вымывания радиоактивной примеси естественными осадками и туманом приведены в Приложении N 7);

- радиоактивного распада примеси во время переноса (значения постоянной распада радиоактивной примеси для основных радионуклидов, выбрасываемых в атмосферу АС и другими ОИАЭ, приведены в Приложении N 8);

- влажности атмосферы;

- дисперсного состава примеси или скорости гравитационного осаждения (формулы для расчета скорости гравитационного осаждения частицы приведены в Приложении N 9);

- значений метеопараметров (продольной и поперечной скорости ветра, коэффициента турбулентной диффузии, энергии турбулентных пульсаций) по всему пограничному слою атмосферы;

- мощности выброса радиоактивной примеси в атмосферу.

2) использования аттестованных методик для определения метеорологических параметров модели (основные рекомендации к датчикам метеопараметров приведены в Приложении N 10).

3) проведения в режиме реального времени прогностических оценок радиоактивного загрязнения окружающей среды и дозовых нагрузок на персонал и население (расчет по модели со всеми функционалами, определяющими дозовые нагрузки на персонал и население и масштабы загрязнения окружающей среды в стационарных условиях, не может превышать время, необходимое на получение осредненных значений измеренных величин метеопараметров ~10 мин).

4) экономического фактора, суть которого применительно к данному случаю состоит в том, что предпочтение рекомендуется отдавать такой модели, которая, не ухудшая параметры системы и точность прогнозирования, позволяет уменьшить затраты на оборудование.

V. Параметры модели

12. Одним из основных параметров модели является величина мощности выброса радиоактивной примеси , поступающей в атмосферу из отверстий (щелей, трещин, клапанов, разрывов) при авариях на АС.

13. Для определения указанного параметра в режиме реального времени проектирующим организациям рекомендуется использовать новые разработки приборов, обеспечивающих измерение не только общей активности газоаэрозольной примеси, но и парциальных величин при выбросе примеси, состоящей из нескольких радионуклидов, а при отсутствии подобных приборов, проводить НИОКР с целью их разработки.

14. При отсутствии соответствующей аппаратуры для определения последнюю рекомендуется оценивать путем сравнения расчетного и измеренного значений мощности дозы внешнего облучения, создаваемого потоком фотонного излучения радионуклидов радиоактивной примеси в точке, ближайшей к оси выброса, если априори известен ее состав и радиационные характеристики радионуклидов. Однако точность подобных оценок величины будет существенно ниже, чем при её приборном измерении.

VI. Методы прогнозирования

15. Радиационные характеристики радиоактивного загрязнения окружающей среды: мощность дозы от объемного источника (факела или облака выбросов), поверхностная активность подстилающей поверхности, мощность дозы от подстилающей поверхности, доза при ингаляции и т.д. определяются как функционалы полученного решения для концентрации радиоактивной примеси, радионуклидный состав которой определен.

16. При оценке таких радиационных характеристик, как мощности дозы внешнего облучения от объемного источника (радиоактивного облака) и подстилающей поверхности, загрязненной в результате осаждения радиоактивной примеси, рекомендуется использовать интегральные методы. Это позволит не только избежать погрешности при оценке указанных величин, связанной с нарушением закона лучевого равновесия на границе раздела сред воздух-земля, но и найти ряд особенностей в пространственном распределении этих величин, обусловленных переносом примеси в атмосфере при различных ее метеорологических состояниях. При этом знание величины позволяет существенно скорректировать расчетные оценки пространственных распределений мощности дозы, активности подстилающей поверхности и других радиационных характеристик.

17. Для оценок радиационной обстановки в районе действующей АС рекомендуется использовать математические методы, изложенные в приложениях N 11-15, физические основы которых представлены в Приложениях N 16-18, а также технические средства, рассматриваемые в Приложении N 19.

18. Мониторинг, основанный на использовании автоматизированных технических средств, является альтернативой математическим методам прогнозирования радиационной обстановки. Информативность подобной автоматизированной системы напрямую зависит от числа постов контроля, оборудованных датчиками, регистрирующими ионизирующее излучение.

VII. Условия необходимого и достаточного количества датчиков АСКРО, размещаемых на промплощадке и в СЗЗ ОИАЭ

19. Для определения необходимого и достаточного числа датчиков, способных зарегистрировать факел или облако радиоактивных выбросов, распространяющихся от источника при любых направлении ветра и состоянии устойчивости атмосферы, рекомендуется воспользоваться алгоритмом, изложенным в Приложении N 20.

VIII. Принцип размещения детекторов фотонного излучения АСКРО на промплощадке и в СЗЗ ОИАЭ

20. Радиоактивное загрязнение окружающей среды при несанкционированном выбросе радиоактивной примеси в виде перегретой газовой струи из отверстий, клапанов, неплотностей сосудов, рваных отверстий или щелей, возникающих в случае взрыва или разрыва резервуаров, находящихся под высоким давлением и высокой температурой, или в случае мощного импульсного выброса радиоактивной примеси через отверстия (например, при проведении учений на АС рассматривается отверстие в потолочном перекрытии реактора (РБМК), возникающее при падении инородного предмета с воздуха), когда полностью отсутствует информация о радионуклидном составе примеси или спектральном составе ее фотонного излучения, рекомендуется оценивать по показаниям технологических датчиков, устанавливаемых в резервуарах и определяющих температуру и давление среды, и датчиков АСКРО, определяющих мощность дозы внешнего облучения от радиоактивного облака, образовавшегося в результате выброса. При этом датчики на промплощадке и в СЗЗ рекомендуется располагать таким образом, чтобы расстояние от возможного источника радиационной опасности (АС) до любого из датчиков было строго различно. Например, последовательность значений указанных расстояний (от минимального до максимального) могла бы подчиняться формуле спирали Архимеда. Принцип размещения детекторов фотонного излучения АСКРО на промплощадке и в СЗЗ ОИАЭ более подробно рассмотрен в Приложении N 21.

21. Для оперативной оценки радиоактивного загрязнения окружающей среды при отсутствии информации о радионуклидном составе радиоактивной примеси, формирующей радиоактивное облако, с учетом расстановки детекторов фотонного излучения системы АСКРО равномерно по азимуту и на различных расстояниях от источника, рекомендуется определить спектральный состав фотонного излучения радиоактивной примеси и его среднюю энергию, для чего рекомендуется воспользоваться алгоритмом, приведенным в Приложении N 21.


IX. Уточнение величины

22. Одним из основных параметров модели переноса газоаэрозольной радиоактивной примеси в атмосфере, как отмечалось в пункте 12 настоящего Положения, является величина радиоактивной примеси, поступающей в атмосферу при радиационных авариях на АС или любом другом ОИАЭ. Уточнение этого параметра позволяет скорректировать все остальные характеристики радиоактивного загрязнения окружающей среды (величину объемной активности радиоактивной примеси, распространяющейся в воздушном бассейне, и масштаб радиоактивного загрязнения окружающей среды в целом). Метод уточнения величины , а также более точная оценка величины с учетом фоновых значений мощности дозы естественного или техногенного происхождения приведены в Приложении N 22.

X. Выбор датчика для уточнения величины

23. Для получения более точного значения ее рекомендуется определять по показанию детектора АСКРО при условии их достаточного числа в СЗЗ, ближайшего к оси выброса в соответствии с рис.1 Приложения N 23.

24. Определение датчика, ближайшего к оси выброса, рекомендуется проводить по алгоритму, изложенному в Приложении N 23.

25. Пример алгоритма прогностических расчетов загрязнения окружающей среды с оценкой дозовых нагрузок на персонал и население приведен на рис.2 Приложения N 23.

26. Термины и определения, используемые в настоящем документе, приведены в Приложении N 24.

Доступ к полной версии документа ограничен
Этот документ или информация о нем доступны в системах «Техэксперт» и «Кодекс».